

Journal of Organometallic Chemistry 503 (1995) 277-287

Umsetzungen der lithiierten Halbsandwich-Komplexe $(CO)_3 MC_5 H_4$ -Li (M = Mn, Re) mit organischen Carbonylverbindungen $\stackrel{\circ}{\Rightarrow}$

Max Herberhold *, Martin Biersack

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 10 12 51, D-95440 Bayreuth, Deutschland

Eingegangen den 13. Februar 1995

Abstract

The reactions of the lithiated half-sandwich complex $(CO)_3MnC_5H_4$ -Li ([Cym]-Li, 2a) with derivatives of organic dicarboxylic acids have been investigated with the goal of introducing several cymantrenyl ([Cym]) substituents in close proximity into organic molecules. The carboxylic acid chlorides of terephthalic and fumaric acid give, after reaction with excess 2a in THF solution and chromatography of the primary lithium compounds on silica, the bis(dicymantrenylcarbinols), $[Cym]_2C(OH)-C_6H_4-C(OH)[Cym]_2$ (13a) and E-[Cym]_2C(OH)-CH=CH-C(OH)[Cym]_2 (17a) which contain four cymantrenyl units. Phthaloyl chloride produces a product with isobenzofuranol skeleton and three cymantrenyl substituents. Cyclic anhydrides such as maleic and phthalic anhydride lead to lactons containing two geminal cymantrenyl groups.

With chloroformates, the lithiated derivatives of cymantrene and cyrhetrene, $(CO)_3MC_5H_4$ -Li (M = Mn (2a), Re (2b)) can be directly converted to tris(cymantrenyl)- and tris(cyrhetrenyl) carbinol, $[Cym]_3C$ -OH (18a) and $[Cyr]_3C$ -OH (18b), respectively. In the presence of paraformaldehyde complexes 2a,b are first converted into the hydroxymethyl compounds $(CO)_3MC_5H_4$ -CH₂OH (M = Mn (21a), Re (21b)) which then react, by further lithiation and formaldehyde insertion steps, to give 1,2-bis(hydroxymethyl) half-sandwiches, $(CO)_3MC_5H_3(CH_2OH)_2$ (M = Mn (22a), Re (22b)). Starting from thionyl chloride and 2a, dicymantrenyl sulfoxide, $[Cym]_2SO$ (28a), is obtained. The new complexes have been characterized on the basis of their ¹H and ¹³C NMR data.

Zusammenfassung

Die Reaktionen des lithiierten Halbsandwich-Komplexes $(CO)_3 MnC_5H_4-Li$ ([Cym]-Li, **2a**) mit Derivaten organischer Dicarbonsäuren wurden mit dem Ziel untersucht, mehrere Cymantrenyl-Substituenten ([Cym]) nahe beieinander in organische Moleküle einzubauen. Die Säurechloride der Terephthalsäure und Fumarsäure ergeben, nach Umsetzung mit überschüssigem **2a** in THF-Lösung und Chromatographie der primären Lithiumprodukte an Kieselgel, die Bis(dicymantrenylcarbinole), $[Cym]_2C(OH)-C_6H_4-C(OH)[Cym]_2$ (**13a**) und $E-[Cym]_2C(OH)-CH=CH-C(OH)[Cym]_2$ (**17a**), die vier Cymantrenyl-Einheiten enthalten. Phthaloylchlorid liefert ein Produkt mit Isobenzofuranol-Gerüst und drei Cymantrenyl-Substituenten. Cyclische Anhydride wie Malein- und Phthalsäureanhydrid führen zu Lactonen mit zwei geminalen Cymantrenyl-Gruppen.

Mit Chlorameisensäureester lassen sich die lithiierten Derivate des Cymantrens und Cyrhetrens, $(CO)_3MC_5H_4$ -Li (M = Mn (2a), Re (2b)), direkt in Tris(cymantrenyl)- und Tris(cyrhetrenyl)carbinol, $[Cym]_3C$ -OH (18a) bzw. $[Cyr]_3C$ -OH (18b), überführen. Mit Paraformaldehyd werden 2a,b zuerst in die Hydroxymethyl-Verbindungen (CO)₃MC₅H₄-CH₂OH (M = Mn (21a), Re (21b)) umgewandelt, die bei erneuter Lithiierung und Formaldehyd-Insertion zu 1,2-Bis(hydroxymethyl)-Halbsandwich-Komplexen, (CO)₃MC₅H₃-(CH₂OH)₂ (M = Mn (22a), Re (22b) weiterreagieren. Aus Thionylchlorid wird mit 2a das Dicymantrenyl-Sulfoxid, $[Cym]_2$ SO (28a), erhalten. Die neuen Komplexe wurden anhand ihrer ¹H- und ¹³C-NMR-Spektren charakterisiert.

Keywords: Manganese; Rhenium; Lithiated half-sandwich complexes; Cyclopentadienyl complexes

^{π} Abkürzungen: Cp = η^5 -Cyclopentadienyl (η^5 -C₅H₅); CpMn(CO)₃ = Cymantren; [Cym] = Cymantrenyl, [(CO)₃MnC₅H₄-], [Cyr] = Cyrhetrenyl, [(CO)₃ReC₅H₄-]; ⁿBu = n-Butyl (C₄H₉-). Die Buchstaben **a** und **b** im Numerierungssystem beziehen sich jeweils auf Manganoder Rhenium-Verbindungen.

^{*} Corresponding author.

1. Einleitung

Organische Verbindungen mit einem oder mehreren Cymantrenyl-Substituenten lassen sich in der Regel ausgehend von Cymantren (**1a**) über die lithiierte Zwischenstufe (CO)₃MnC₅H₄-Li (**2a**) erhalten. Die erstmals von Nesmeyanov et al. [1] beschriebene Lithiierung von **1a** ist heute eine etablierte Methode [vgl. 2-7]; sie verläuft nahezu quantitativ (Gl. 1). In analoger Weise kann Cyrhetren (**1b**) mit ⁿButyl-lithium zu **2b** metalliert werden [8].

In Schema 1 sind die bisher bekannten zweikernigen Komplexe zusammengestellt, in denen zwei Cymantrenyl-Einheiten über organische Brücken verknüpft sind [5,7,9-18]. Nur in wenigen Fällen (5a-8a) wurden die Komplexe über 2a als Zwischenstufe dargestellt. Besonders erstaunlich ist darüber hinaus, daß bisher keine Umsetzungen von 2a mit organischen Säurechloriden oder Säureestern beschrieben wurden, die Cymantrenyl-ketone 4a und 9a wurden auf anderem Wege erhalten. Im Zusammenhang mit Untersuchungen über die lithiierten Halbsandwich-Chalkogenole, $(CO)_3MC_5H_4$ – ELi (M = Mn, Re; E = S, Se, Te), und ihre Umsetzungen mit organischen Säurechloriden [19] waren zum Vergleich die analogen Umsetzungen der chalkogenfreien Halbsandwich-Organyle **2a,b** von Interesse. Wir haben daher eine Reihe von Reaktionen zwischen dem lithiierten Halbsandwich-Mangankomplex **2a** und Säurechloriden, Säureestern und Säureanhydriden durchgeführt in dem Bestreben, mehrere Cymantrenyl-Substituenten in räumlicher Nähe nebeneinander in organische Moleküle einzubauen. In einer Reihe von Fällen wurde sichergestellt, daß die Umsetzungen von **2b** zu ganz analogen Produkten führen.

2. Ergebnisse und Diskussion

2.1. Darstellung der Verbindungen

Cymantren (1a) und Cyrhetren (1b) reagieren in THF-Lösung bei -78° C mit ⁿButyl-lithium glatt zu den lithiierten Cyclopentadienylderivaten 2a,b, die in Lösung direkt weiter umgesetzt werden können (Gl. 1).

2.1.1. Umsetzungen mit Säurechloriden

Mit Benzoesäurechlorid bilden **2a,b** über die Benzoylderivate, $(CO)_3MC_5H_4-C(O)Ph$ (M = Mn, Re),

Schema 1. Verbindungen mit zwei Cymantrenyl-Substituenten.

hinweg Phenylcarbinolate, die bei der Chromatographie über Kieselgel zu den bekannten Phenylcarbinolen **7a,b** hydrolysiert werden (Gl. 2):

2a: M = Mn**2b**: M = Re

Die Umsetzung von Benzoyl-cymantren, $(CO)_3$ Mn-C₅H₄-C(O)Ph, mit **2a** unter Bildung von **7a** wurde inzwischen von Rausch, Bitterwolf und Mitarbeitern [6] beschrieben, mit **2b** erhält man ein gemischtes Mn/Re-Carbinol [6]. In Gegenwart von Säuren (H₂SO₄, CF₃COOH) bildet **7a** intensiv gefärbte Lösungen des Carbenium-Ions [Cym]₂PhC⁺, die einige Tage beständig sind; nach den IR- und ¹³C-NMR Daten ist die positive Ladung delokalisiert [12].

Wenn anstelle des monofunktionellen Benzoesäurechlorids das bifunktionelle Terephthalsäuredichlorid mit 2a zur Reaktion gebracht wird, entsteht das schwerlösliche Produkt 13a mit vier Cymantrenyl-Substituenten:

Dagegen bilden sich bei der Umsetzung von **2a,b** mit Phthalsäuredichlorid jeweils Derivate mit Isobenzofuran-Gerüst (**14a,b**), die nur 3 Halbsandwich-Reste enthalten (Gl. 3):

Es ist plausibel, daß dabei primär durch zweimalige LiCl-Abspaltung ein Diketon entsteht, das mit einem weiteren Äquivalent Lithiumorganyl (RLi) unter Ringschluß reagiert; die anschließende Hydrolyse auf Kieselgel ergibt dann (14a-c). Für das (nicht isolierte) Diketon als mögliche Zwischenstufe spricht die Reaktion (Gl. 4) von *ortho*-Benzoylbenzophenon mit 2a,b zu den 1,3-Dihydro-isobenzofuranolen 15a,b, die als cis/trans-Isomerengemisch (ca. 1:1) anfallen. (Die Phenylreste im planaren 1,3-Dihydro-isobenzofuran-Ring können *cis*- oder *trans*-ständig angeordnet sein.)

2.1.2. Umsetzungen mit Säureestern

Bei den Reaktionen von 2a mit Fumarsäuredichlorid oder Fumarsäurediethylester (4:1) entsteht das schwerlösliche 1,1,4,4-Tetracymantrenyl-1,4-dihydroxy-*trans*buten-2 (17a).

Im Falle des Fumaresters ließ sich die Umsetzung mit 2a nach Reaktion nur einer Molekülhälfte auf der Stufe **16a** anhalten, wenn die entsprechende Stöchiometrie eingehalten wurde:

Da die Ketofunktion der primär mit 2a (1:1) entstehenden Vorstufe reaktiver ist als die Esterfunktion, führt die 2:1 Umsetzung selektiv zu 16a.

Bei der Reaktion von Chlorameisensäure-methylester mit überschüssigem **2a,b** entstehen erwartungsgemäß die dreikernigen Carbinole **18a,b**.

Wie bereits von Ginzburg et al. [20] gezeigt wurde, läßt sich Tris(cymantrenyl)carbinol **18a** auch in zwei Schritten durch Umsetzung von **2a** mit Di(cymantrenyl)keton (**4a**) darstellen; es ist als Vorstufe des Carbenium-Ions $[Cym]_3C^+$ von Interesse. Als weiteres Edukt für eine Eintopfsynthese von **18a,b** kommt Phosgen (als Trimeres (Cl₃CO)₂CO) in Betracht.

2.1.3. Umsetzungen mit cyclischen Säureanhydriden

Bei Zugabe von Maleinsäureanhydrid oder Phthalsäureanhydrid zu THF-Lösungen von Lithio-cymantren 2a entstehen (unter formaler Li₂O-Eliminierung) die Lactone **19** und **20a**:

Lactonderivate des Typs **20** (= Phthalide) wurden bereits früher bei der Umsetzung von Phthalsäureanhydrid mit lithiierten Arylverbindungen erhalten [21]; analog entsteht mit ⁿButyl-lithium das Produkt **20c**. Es ist bemerkenswert, daß **20a** mit **2a** nicht mehr weiter zu **14a** reagiert.

2.1.4. Umsetzungen mit Formaldehyd

Mit Paraformaldehyd, $(CH_2O)_n$, lassen sich über die Reaktion mit **2a,b** und nachfolgende Hydrolyse direkt die Hydroxymethyl-Verbindungen **21a,b** darstellen, die ursprünglich durch Reduktion der Formyl-Derivate $(CO)_3MC_5H_4-C(O)H$ (M = Mn, Re) erhalten worden waren [22,23]. Die Komplexe **21a,b** lassen sich erneut, in der *ortho*-Position zum Hydroxymethyl-Substituenten, lithiieren. Bei der zweiten Metallierung ist die doppelte Menge an ⁿBuLi erforderlich, da zuerst die Hydroxy-Gruppe lithiiert wird [22]. Durch Zugabe von Paraformaldehyd und nachfolgende Hydrolyse können die Bis(hydroxymethyl)cyclopentadienyl-Verbindungen **22a,b** erhalten werden:

Das Lithiumderivat von **21a** reagiert mit Benzoesäurechlorid zum Benzoesäureester **23a**, mit Phthalsäuredichlorid zum Phthalsäurediester **24a**:

Erwartungsgemäß reagieren die Ester **23a** und **24a** unter den angewandten Bedingungen (25° C) nicht weiter mit (CO)₃MnC₅H₄-CH₂OLi.

2.1.5. Umsetzungen mit Nichtmetallhalogeniden

Ähnlich wie die (in der vorliegenden Arbeit untersuchten) Reaktionen von **2a** mit Säurechloriden organischer Säuren lassen sich die Umsetzungen von **2a** mit Elementhalogeniden zur Synthese von Produkten verwenden, die mehrere Cymantrenyl-Substituenten enthalten [5]. Neuere Beispiele sind die zweikernigen Komplexe **25a–27a**, die aus **2a** und Ph₂SiCl₂ [7], PhPCl₂ [5] bzw. SCl₂ [5] entstehen. Die Struktur von **25a** und **27a** wurde röntgenographisch bestimmt [7].

Wie schon von Nesmeyanov und Mitarbeitern [24] am Beispiel des Zinn(IV)-Komplexes $Sn[C_5H_4Mn(CO)_3]_4$ gezeigt wurde, können bis zu vier Cymantrenyl-Reste an ein einziges Atom gebunden sein. Hinweise auf direkte intramolekulare Wechselwirkungen zwischen Cymantrenyl-Substituenten sind bisher nicht bekannt.

Mit Thionylchlorid, $SOCl_2$, bilden Lösungen von **2a** den SO-verbrückten Komplex **28a**; bei der entsprechenden Reaktion mit SeOCl₂ wurde jedoch nur Se_n[C₅H₄Mn(CO)₃]₂ (n = 1, 2) [5] im Reaktionsgemisch gefunden.

Verbindung **28a**, in der zwei Cyclopentadienylringe über eine Thionylbrücke verbunden sind, unterscheidet sich erheblich von Verbindung **29a** [25–27; vgl. 28], in der

Tabelle 1 ν (CO)-Absorptionen (cm⁻¹) in den IR-Lösungsspektren (THF)

Manganverbindungen	Rheniumverbindungen	Lit.
1a 2021 s, 1934 vs	1b 2022 s, 1925 vs	[5,19]
2a 1986 vs, 1887 vs,	2b 1991 vs, 1886 vs	[19]
1819w ^a		
7a 2017 s, 1934 vs	7b 2019 s, 1926 vs	
13a 2017 s, 1934 vs		
14a 2021 s, 1935 vs	14b 2022 s, 1929 vs	
15a 2020 s, 1933 vs	15b 2022 s, 1927 vs	
16a 2019 s, 1936 vs,		
1720 vw ^h		
17a 2018 s, 1936 vs		
18a 2018 s, 1936 vs	18b 2020 s, 1929 vs	
19a 2022 s, 1940 vs,		
1777 w °		
20a 2022 s, 1939 vs,		
1786 w ^c		
21a 2018 s, 1931 vs	21b 2020 s, 1922 vs	
22a 2015 s, 1930 vs	22b 2018 s, 1922 vs	
23a 2021 s, 1936 vs,		
1724 w ^h		
24a 2021 s, 1936 vs,		
1728 w ^h		
25a 2020 s, 1937 vs		[7]
26a 2020 s, 1937 vs	26b 2022 s, 1931 vs	[5]
27a 2020 s, 1940 vs	27b 2022 s, 1934 vs	[5]
28a 2025 s, 1942 vs		
30a 2025 s, 1945 vs,	30b 2026 s, 1936 vs,	[19]
1787 w ^c	1786 w ^c	

^a Die schwache Bande bei ca. 1820 cm⁻¹ entspricht einem Dicarbonylmangan-Komplex, der durch photo-induzierte CO-Abspaltung in der Meßlösung entsteht.

^b Estercarbonyl-Bande.

^c Lactoncarbonyl-Bande.

die beiden Manganatome über einen Thionyl-Brückenliganden verknüpft sind [26].

2.1.6. Schlußfolgerungen

Die beiden lithiierten Halbsandwich-Komplexe **2a,b** reagieren in analoger Weise glatt mit organischen Säurechloriden oder mit Nichtmetallchloriden unter LiCl-Abspaltung. Die Reaktivität gegenüber **2a,b** nimmt in der Reihenfolge Säurechlorid-Keton-Säureester-Säureanhydrid ab.

Am Beispiel der Reaktion mit Phthalsäuredichlorid läßt sich die unterschiedliche Reaktivität der Lithio-Reagenzien vergleichen: Während mit $(CO)_3MC_5H_4$ -Li (2a,b) unter Ringschluß die 1,3-Dihydro-isobenzofuranole 14a,b entstehen, entsprechend der Reaktion von "BuLi zu 14c, bleibt die Cyclisierung bei der Umsetzung mit dem Alkoholat (CO)₃MnC₅H₄-CH₂OLi zum Diester 24a aus. Die Lithio-thiolate $(CO)_3MC_5H_4$ -SLi (M = Mn, Re) führen zu den 3,3'-Bis(tricarbonylmetallcyclopentadienylthiolato)phthaliden **30a**, **b** [19], aber bei der Umsetzung mit den entsprechenden Lithioselenolaten und -tellurolaten $(CO)_3MC_5H_4ELi$ (M = Mn, Re; E = Se, Te) zerfallen die Produkte schon unterhalb Raumtemperatur unter Bildung von Dichalkogenid [Cym]-EE-[Cym] bzw. [Cyr]-EE-[Cyr] (E = Se, Te) und Biphthalid [19]:

2.2. Spektroskopische Charakterisierung der Verbindungen

Die neuen Komplexe wurden anhand der IR-Lösungspektren im Carbonylbereich, der ¹H- und ¹³C-NMR-Spektren und der Massenspektren identifiziert.

Alle Cymantrenyl- und Cyrhetrenyl-Komplexe zeigen in den IR-Spektren (Tabelle 1) das Tricarbonylmetall-Muster mit einer starken und einer sehr starken ν (CO)-Absorption (Schwingungsrassen A₁ und E). Wegen der Schwerlöslichkeit einiger Komplexe (**13a**, **17a**) und zum Vergleich mit früheren Arbeiten [5,7,19] wurde THF als Solvens verwendet. Die Tricarbonylmetall-Gruppe ergibt im ¹³C-NMR-Spektrum nur jeweils ein Signal bei ca. 224 (M = Mn) bzw. 194 ppm (M = Re), wie es bei freier Drehbarkeit um die lokale C₃-Achse zu erwarten ist.

Die ¹H- und ¹³C-NMR-Spektren sind in den Tabellen 2-4 zusammengestellt. Tabelle 2 enthält neben Vergleichsverbindungen (3a,b, 27a) die einfachen Derivate von $CpMn(CO)_3$ (1a) und $CpRe(CO)_3$ (1b). Tabelle 3 zeigt die Übersicht über Verbindungen mit Sechsring-Aromaten, Tabelle 4 die der Verbindungen mit Isobenzofuranol- und Isobenzofuranon- (= Phthalid-) Gerüst.

In den ¹H-NMR-Spektren werden in vielen Fällen vier Signale für die 4 Cyclopentadienyl-Ringprotonen beobachtet, und in den ¹³C-NMR-Spektren erscheinen in der Regel vier Signale für die zugehörigen Kohlenstoffatome (Tabellen 2-4). Nur bei einfachen Substituenten am Cyclopentadienyl-Fünfring (18a,b, 21a,b, 23a-25a, 27a) bleiben die α - und β -ständigen Positionen (H², H⁵ und C², C⁵ bzw. H³, H⁴ und C³, C⁴) magnetisch äquivalent.

Sowohl in den ¹H- als auch in den ¹³C-NMR-Spektren wird das bei tieferem Feld auftretende Signal erfahrungsgemäß den Ringpositionen 2 und 5 zugeordnet

Tabelle 2				
¹ H- und ¹³ C-NMR-Spektren der	Verbindungen	ohne	Sechsring-A	romaten ^a

Nr.	¹ H-NMR-Spektr	en		¹³ C-NMR-Spektren					
	$\delta(H^2-H^5)$	(H^2-H^5) $\delta(OH)$		Organ. Gruppe		δ(C-OH)	δ (Cyclopentadienyl)		$\delta(M(CO)_3)$
							$\delta(C^1)$	$\delta(C^2-C^5)$	
3a [5]	4.67 (m, 8H)		$\delta(CH_2)$ 3.20 (s, 2H)	$\delta(CH_2)$	27.2		103.2	81.8 83.1	224.8
3b [5]	5.30 (m, 8H)		3.49 (s, 2H)		27.4		107.4	83.8 84.2	193.7
11a [18]	4.68 (vt) 5.01 (vt)			δ(C≡C)	(nicht beob.)			81.10; 81.22 82.05; 86.60	223.9
16a ^b	4.66 (s, br, 4H) 4.95 (s, br, 4H)	2.11 (s, 1H)	6.11 (d, 1H) 7.09 (d, 1H) [15.0] OEt: 1.27 (t, 3H)	$C^{3'}$ $C^{1'}$ $C^{1'}$ COOEt	165.8 (C ^{1'}) 120.4 (C ^{2'}) 148.2 (C ^{3'}) 14.1 (CH ₃)	70.6	107.5	80.3; 81.3 84.2; 85.5	223.9
18a	4.65 (s, br, 6H) 4.97 (s, br, 6H)	2.31 (s, 1H)	4.21 (q, 2H)		$61.0(CH_2)$	69.9	110.4	80.3 85.2	224.2
18b	5.28 (vt, 6H) 5.52 (vt, 6H)	2.08 (s, br, 1H)				nicht beob. ^c	113.2	82.4 87.1	193.0
19a ^d	4.71 (m, 2H) 4.76 (m, 2H) 4.99 (m, 2H) 5.04 (m, 2H)		6.27 (d, 1H) 7.60 (d, 1H) [5.1]	5' V 4' X3'	170.4 ($C^{1'}$) 83.8 ($C^{3'}$) 156.4 ($C^{4'}$) 121.6 ($C^{5'}$)		101.9	81.1; 82.2 85.2; 85.7	224.2
	5.01 (m, 211)		$\delta(CH_2)$		12110 (0)	$\delta(CH_2)$			
21a	4.69 (s, br, 2H) 4.80 (s, br, 2H)	1.58 (t, 1H) [6.1]	4.32 (d, 2H) [6.1]			58.8	104.5	82.0 82.3	224.6
21b	5.29 (vt, 2H) 5.43 (vt, 2H)	1.50 (t, 1H) [6.1]	4.42 (d, 2H) [6.1]			58.3	108.9	83.4 83.8	193.8
22a	4.58 (t, 1H) 4.78 (d, 2H) [2 7]	2.68 (s, br, 2H)	4.34 (br, 2H) 4.39 (br, 2H) AE	3		57.9	8(C ² , C 102.0	79.7 (C ⁴) 83.9 (C ³ , C ⁵)	224.2
22b	5.15 (t, 1H) 5.41 (d, 2H)	2.60 (s, br, 2H)	4.33 (d, 2H) 4.52 (d, 2H) AB			57.4	105.5	80.8 (C ⁴) 85.6 (C ³ , C ⁵)	193.5
27a [5]	4.71 (br, 4H) 4.95 (br, 4H)						96.0	82.3 87.9	223.7
28a	4.79 (m, 4H) 5.17 (m, 2H) 5.38 (m, 2H)						105.8	81.9; 82.8 83.5; 84.7	222.3

Solvens CDCl₃, wenn nicht anders angegeben; Referenz: $\delta(^{1}H)$ 7.24; $\delta(^{13}C)$ 77.0; Kopplungskonstanten $J_{H,H}$ (Hz) in eckigen Klammern. ^b Zuordnung entsprechend den Literaturdaten [33] für den Ethylester der E-Butensäure. ^c ¹³C-NMR-Spektrum von **18b** in Aceton-d₆: δ (C–OH) 70.7, δ (C¹) 116.3, δ (C²–C⁵) 83.5 und 88.9; δ (CO) 195.1. ^d Solvens CD₂Cl₂; Referenz δ (¹H) 5.32; δ (¹³C) 53.8.

(vgl. [5,7,19,29]). Signalaufspaltung tritt ein, wenn ein chirales oder prochirales Zentrum unmittelbar an den Cyclopentadienylring gebunden ist [cf. 29,30]; die Aufspaltung ist in der Regel beim Tieffeld-Signal (α -Positionen) größer. Bei den Cyrhetrenyl- ist die Signalaufspaltung meist besser zu erkennen als bei den Cymantrenyl-Komplexen (z.B. **7a**, **7b**); so werden für **14b** zwölf gut getrennte Multiplett-Protonensignale und ebenso zwölf ¹³C-Signale registriert. Die Wirkung eines Chiralitätszentrums läßt sich besonders klar in der Reihe **25a–28a** demonstrieren; bei [Cym]₂PPh (**26a**) und [Cym]₂SO (**28a**) wird aufgrund des Chiralitätszentrums am exocyclischen Heteroatom Signalaufspaltung beobachtet. Für [Cyr]₂PPh (**26b**) liegt eine ausführliche NMR-Analyse vor [29].

Die ¹³C-NMR-Spektren der 1,3-Dihydro-isobenzofuranole **14a,b** ergeben für die drei Halbsandwich-Sub-

stituenten zwei M(CO)₃-Signale im Intensitätsverhältnis 2:1. Die Komplexe 15a,b enthalten zwei Chiralitätszentren (an $C^{1'}$ und $C^{3'}$); dazu kommt die Möglichkeit der cis / trans-Isomerie am 1,3-Dihydro-isobenzofuranol-Fünfring. Die beiden Protonensignale, die für die OH-Substituenten der beiden Isomeren (cis / trans) in 15a,b beobachtet werden, sind deutlich getrennt $(\Delta\delta(^{1}\text{H}) \text{ ca. } 0.75 \text{ ppm})$ und von vergleichbarer Intensität. Für die Zuordnung der ¹³C-NMR-Signale im 1,3-Dihydro-isobenzofuran-Grundgerüst von 14a,b, 15a,b und 20a,c wurden die Literaturdaten strukturverwandter Verbindungen [31,32] herangezogen. Für 17a konnten, auch wegen der Schwerlöslichkeit des vierfach Cymantrenyl-substituierten Produkts, keine brauchbaren NMR-Daten erhalten werden; das EI-Massenspektrum ist jedoch schlüssig und zeigt das Molekülion sowie die durch H₂O-Abspaltung und schrittweise Eliminierung

Tabelle 3 ¹H- und ¹³C-NMR-Spektren der Verbindungen, die Sechsring-Aromaten enthalten ^{a,b}

Nr.	H-NMR-Spektre	n		¹³ C-NMR-Spektren					
	$\delta(H^2-H^5)$	δ(OH)	$\delta(C_6-Aromat)$	$\delta(C_6 - Aror$	nat)	δ(C-OH)	δ(Cyclopentadienyl)		$\delta(M(CO)_3)$
							$\delta(C^1)$	$\delta(C^2-C^5)$	
7a °	4.63 (m, 6H) 5.04 (vt, 2H)	2.47 (s, br, 1H)	7.37 (m, 5H)	$ \begin{array}{c} $	$ \begin{array}{c} 144.6 (C^{1'}) \\ 125.8 \\ 128.1 \end{array} (C^{2'} - C^{6'}) \end{array} $	72.8	111.7	79.7; 80.6 85.8; 86.2	224.2
7b	5.22 (m, 6H) 5.57 (vt, 2H)	2.29 (s, 1H)	7.35 (s, br, 5H)	4	$ \begin{array}{c} 143.3 \ (C^{1'}) \\ 126.1 \\ 128.2 \end{array} \right\} \ (C^{2'} - C^{6'}) $	72.4	115.1	81.7; 83.3 87.4; 88.3	193.3
13a	4.63 (s, br, 12H) 5.03 (s, br, 4H)	2.50 (s, br, 2H)	7.36 (s, br, 4H)	$\overset{6'}{\underset{5'}{\bigcup}}\overset{L'}{\underset{14'}{\bigcup}}^{2'}_{3'}$	142.6 (C ^{1′} , C ^{4′}) 121.1 (C ^{2′} , C ^{3′} , C ^{5′} , C ^{6′})	72.8	111.7	79.8; 80.4 85.9; 86.2	224.2
23a	4.96 (s, br, 4H)	$\delta(OCH_2)$: 4.69 (s, br, 2H)	7.51 (m, 3H) 8.06 (m, 2H)	6' 5' 4' 3'	(C ^{1'} nicht beob.) 132.2 (C ^{4'}) 128.4; 129.7 (C ^{2'} , C ^{3'} , C ^{5'} , C ^{6'})		97.9 (C ¹) δ (OCH ₂): 60.0 δ (C=O): 166.0	82.0 84.3	224.3
24a	4.92 (s, br, 8H)	δ(OCH ₂): 4.70 (s, 4H)	7.57 (m, 2H) 7.70 (m, 2H)		131.0 (C ^{1'} , C ^{2'}) 129.0; 131.4 (C ^{3'} -C ^{6'})		$\delta(OCH_2):$ $\delta(OCH_2):$ $\delta(C=O):$ 166.8	82.2 84.6	224.1
25a ^d [7]	4.91 (m, 8H)		7.47 (m, 5H) 7.66 (m, 5H)	$\overset{6'}{\underset{5'}{\bigcup}}\overset{1'}{\underset{4'}{\bigcup}}\overset{2'}{\underset{3'}{2'}}$	135.8 (C ^{1'}) 132.3; (C ^{2'} , C ^{6'}) 130.5 (C ^{3'} , C ^{5'}) 128.1 (C ^{4'})		92.7	82.8 84.8	224.2
26a ^{e.f} [5]	4.71 (s, br, 2H) 4.76 (s, br, 2H) 4.84 (s, br, 2H) 5.01 (s, br, 2H)		7.40 (m, 5H)		135.5 (C ^{1′}) [8.5] ^f 133.4 (C ^{2′} , C ^{6′}) [20 128.6 (C ^{3′} , C ^{5′}) [7.7 129.9 (C ^{4′})	.5]]	92.30 [14.5]	83.63/ 83.78 89.89 [12.0] 90.33 [14.5]	223.8 / _f

^a Solvens CDCl₃, wenn nicht anders angegeben; Referenz: $\delta(^{1}H)$ 7.24; $\delta(^{13}H)$ 77.0.

^b vgl. Tabellen 2 und 4.

^c Lit. [6]; $\delta(^{1}H)$ in CDCl₃: 4.66 (m, 6H), 5.06 (vt, 2H), 2.50 (s, 1H), 7.39 (m, 5H, Ph).

^d Solvens Aceton-d₆; Referenz: $\delta(^{1}H)$ 2.04; $\delta(^{13}C)$ 29.8.

^c Daten für $[Cyr]_2$ PPh (26b) in Lit. [5,29].

^f Kopplungskonstanten $J_{P,C}$ in eckigen Klammern.

von 12 CO-Liganden entstehenden Fragmentionen.

Die EI-Massenspektren enthalten stets das Molekülion und dessen CO-ärmere Bruchstücke, so daß die Zahl der vorhandenen Cymantrenyl- oder Cyrhetrenyl-Substituenten leicht ermittelt werden kann. Bei den ⁿButylderivaten **14c** und **20c** entsteht der Basispeak (100%) durch Abspaltung eines Butylrestes (m/e 57). In den Massenspektren der Alkohole wird immer neben den üblichen Fragmentierungen die Eliminierung von $H_2O(m/e\ 18)$ beobachtet. Die vierkernigen Komplexe 13a und 17a geben bei der Fragmentierung simultan H_2O und Dreiergruppen von CO ab.

3. Experimenteller Teil

Wie in den vorausgehenden Arbeiten [5,19] beschrieben, wurden alle Umsetzungen routinemäßig

Tabelle 4

¹H- und ¹³C-NMR-Spektren der Verbindungen mit 1,3-Dihydro-isobenzofuran-Ringsystem ^a

Nr.	¹ H-NMR-Spektre	n	ï	¹³ C-NMR-Spek	tren			
	$\delta(H^2-H^5)$	δ(OH)	δ(Aromat)	δ (Aromat)		δ (Cyclopentad	ienyl)	$\delta(M(CO)_3)$
						$\delta(C^{1'}/C^1)$	$\delta(C^2-C^5)$	
14 a	4.52 (m, 3H) 4.77 (m, 3H) 4.84 (m, 3H) 5.10 (m, 3H)	3.19 (s, 1H)	7.46 (s, 4H)	$\overset{7'}{\underset{6'}{\bigcup}}\overset{8'}{\underset{5'}{\bigcup}}\overset{4'}{\underset{3'}{\bigcup}}\overset{1'}{\underset{3'}{\bigcup}}$	$ \begin{array}{c} 84.0 (C^{3'}) \\ 139.8 \\ 142.2 \\ \end{array} (C^{4'}, C^{9'}) \\ 121.9; 123.4 \\ 130.0; 130.2 \\ \end{array} $	110.3 (C ^{1'}) 104.3; 106.6 109.8 (C ¹)	78.0; 79.2 82.0; 83.0 83.4; 84.8 85.2; 86.9	223.9 224.3; (2:1)
14b	5.10; 5.61 5.21; 5.35 5.37; 5.40 5.43; 5.45	3.02 (s, 1H)	7.41 (m, 2H) 7.48 (m, 2H)		$(C^{5'}-C^{8'})$ 83.9 (C ^{3'}) 139.2 142.7 (C ^{4'} , C ^{9'})	113.5 (C ^{1'}); 103.9, 110.3, 113.0 (C ¹)	79.2; 80.2 81.3; 83.6 84.3; 85.1 85.8; 85.8	192.8 193.4 (2:1)
14c	5.53; 5.61 5.68; 5.72 (jeweils m, 1H) $\delta("butyl):$ 0.84 (m, 9H)	2.58 (s, 1H)	7.08 (m, 1H) 7.30 (m, 3H)		$ \begin{array}{c c} 122.1; 123.7 \\ 130.4; 130.6 \\ (C^{5'}-C^{8'}) \\ 89.6 (C^{3'}) \\ 141.9 \\ 145.4 \\ \end{array} (C^{4'}, C^{5'}) $	107.5 (C ^{1'})	85.9; 86.1 87.1; 89.1 $\delta("butyl):$ 14.0 (C ⁸ , CH	H ₃)
15a	1.24 (m, br, 12H) 1.80 (m, br, 6H)	2.76 (s. 1H)	7 37 (m. 22H)	8' r'	$121.2; 122.2 \\ 127.8; 128.9 \\ (C^{5'}-C^{8'}) \\ 88.0 (C^{3'})$	107 2: 108 1	{22.91; 22.97 25.95; 26.06 40.3 (C ^a) ^c	; 23.06 (C ^γ) ; 26.55 (^β)
	4.67 (m, 4H) 4.96 (m, 2H)	3.52 (s, 1H)	7.76 (m, 6H)		$ \begin{array}{c} 141.7; 142.4\\ 142.7; 143.2\\ 143.7 (C4', C9', Ci)\\ 123.4; 123.5; 123.8\\ 126.0; 126.3; 126.4\\ 126.7; 128.1; 128.5\\ 129.1 \end{array} $	109.7; 111.8	83.3; 83.3 83.5, 83.9 87.0; 87.4	224.4
15b	5.08 (m, 2H) 5.29 (m, 4H) 5.57 (m, 2H)	2.77 (s, 1H) 3.49 (s, 1H)	7.35 (m, 19H) 7.73 (m, 9H)		$\begin{array}{c} (C^{3'}-C^{8'} \text{ und } C^{0,m,p}) \\ 86.7; 87.7 (C^{3'}) \\ 141.6; 141.7; 141.9 \\ 142.4; 142.5; 142.7 \\ 142.8; 143.3 \\ (C^{4'}, C^{9'}, C^{1}) \\ 123.2; 123.5; 123.8 \end{array}$	107.1; 108.0 113.2; 116.2	78.8; 79.7 84.9; 85.3 85.5; 86.0 88.6; 89.3	193.4
20a ^b	4.67 (m, 2H) 4.73 (m, 2H) 5.04 (m, 2H) 5.17 (m, 2H)		7.66 (m, 2H) 7.77 (m, 1H) 7.97 (m, 1H)	$\begin{array}{c} 7' & \bigcup_{g' \in \mathcal{G}} 0 \\ 0 \\ 0' & \bigcup_{g' \in \mathcal{G}} 4' \\ 0 \\ 0 \\ 0 \end{array} \right) $	$\begin{array}{c} 126.0; 126.2; 126.4\\ 126.0; 126.2; 126.4\\ 126.9; 128.1; 128.5\\ 129.1; 129.3\\ (C^{5'}-C^{8'} \text{ und } C^{o,m,p})\\ 82.2 (C^{3'})\\ 151.6 (C^{4'})\\ 125.3 (C^{9'})\\ 122.4; 127.0\\ 130.9; 135.0\\ (C^{5'}-C^{8'})\\ \end{array}$	168.1 (C ^{1'}) 104.2 (C ¹)	80.5; 82.2 85.0; 86.8	223.9

Tabelle 4 (Fortsetzung)

Nr.	¹ H-NMR-Spektren			¹³ C-NMR-Spektren				
	$\delta(H^2-H^5)$	$\delta(OH) = \delta(OH) \delta(Aromat)$		δ(Aromat)		δ(Cyclopent	$\delta(M(CO)_3)$	
						$\delta(C^{1'}/C^1)$	$\delta(C^2-C^5)$	
20c	$ \begin{cases} \delta("butyl) \\ 0.76 (m) \\ 1.13 (m) \\ 1.85 (m) \end{cases} $ 18H		7.32–7.86 (m, 4H)		90.0 (C ^{3'}) 152.5 (C ^{4'}) 126.8 (C ^{9'}) 121.0; 125.3 128.6; 133.7 (C ^{5'} -C ^{8'})	170.1 (C ^{1'})	$\begin{cases} \delta("butyl) \\ 13.6 (C^{\delta}, CH_3)) \\ 22.5 (C^{\gamma}) \\ 25.1 (C^{\beta}) \\ 38.4 (C^{\alpha}) \end{cases}$	
30a [19]	4.56 (m, 2H) 4.59 (m, 2H) 4.67 (m, 2H) 5.06 (m, 2H)		7.57 (m, 1H) 7.67 (m, 3H)		98.4 (C ^{3'}) 148.1 (C ^{4'}) 126.0 (C ^{9'}) 123.1; 125.4 130.8; 135.0 (C ^{5'} -C ^{8'})	166.8 (C ^{1'}) 83.1 (C ¹)	83.0; 83.4 92.2; 93.3	222.9

^a Solvens CDCl₃, wenn nicht anders angegeben; Referenz: $\delta(^{1}H)$ 7.24; $\delta(^{13}C)$ 77.0. ^b Solvens CD₂Cl₂; $\delta(^{1}H)$ 5.32; $\delta(^{13}C)$ 53.8.

^c Zufällige Entartung bei C^{α} in CDCl₃; in Aceton-d₆ treten 3 Signale auf: δ (C^{α}) = 40.12, 41.18 und 41.40.

unter Schutzgas (N2 oder Ar) in Tetrahydrofuran (THF) durchgeführt, das über Na/K-Legierung getrocknet worden war.

3.1. Allgemeine Vorschrift

Eine Lösung von CpMn(CO)₃ (1a, ca. 1-2 mmol) oder CpRe(CO)₃ (1b, ca. 0.5-1.5 mmol) in 20 ml THF

Tabelle 5				
Charakterisierung	und	Reinigung	der	Verbindungen

wird auf -78°C gekühlt und mit der äquivalenten Menge ⁿButyl-lithium (1.6-molare Hexanlösung, Fluka) versetzt. Es wird 45 min bei - 78°C gerührt, bevor der Reaktionspartner, gelöst in 5 ml THF, bei dieser Temperatur langsam zugetropft wird. Dann wird die Kühlung entfernt, so daß sich die Reaktionslösung allmählich auf Raumtemperatur erwärmen kann. Das Solvens THF wird abgezogen, und das Rohprodukt wird durch Säulen-

Nr.	Farbe	Schmp.	Ausbeute (%)	Chromatographie an Kieselgel,
		(()	(nicht optimiert)	Elution mit
7a	gelb	181–183 ^a	71	$Hexan/CH_2Cl_2$ (3:2)
7b	gelb	191–192 (Zers.)	76	$Hexan/CH_2Cl_2$ (1:3)
13a	ocker	Zers. ab 250	49	CH ₂ Cl ₂
14a	ocker	171–172	55	$Hexan/CH_2Cl_2$ (1:3)
14b	hellgelb	154-156	62	CH ₂ Cl ₂
14c	gelborange		85	
15a	goldgelb	b	82	CH ₂ Cl ₂
15b	hellgelb	b	67	CH ₂ Cl ₂
16a	hellgelb	158-159	22	CH ₂ Cl ₂
17a	gelborange	Zers. ab 200	32	CH ₂ Cl ₂
18a	gelb	253–254 (Zers.) ^c	58	$Hexan/CH_2Cl_2(1:1)$
18b	gelb	Zers. ab 220	52	CH ₂ Cl ₂
19a	hellgelb	Zers. ab 160	39	THF
20a	hellgelb	243-244 (Zers.)	35	CH ₂ Cl ₂
20c	hellgelb		34	-
21a	gelb	39 ^d	49	Et ₂ O
21b	blaßgelb	65–66 ^e	53	Et ₂ O
22a	gelb	74–75	46	Et ₂ O
22b	blaßgelb	86-87	49	Et ₂ O
23a	gelb	40-41	83	CH_2Cl_2
24a	hellgelb	Zers. ab 140	56	CH ₂ Cl ₂
28a	braun	Zers. ab 150	15	

^a Lit. [12]: 179–180°C.

^b Beim Abziehen des Solvens bleibt ein voluminöses Produkt zurück, das bei 50°-60° auf etwa ein Drittel des Volumens zusammensintert, ohne zu schmelzen.

Lit. [20]: 268-270°C.

^d Lit. [22]: 40–41°C.

[°] Lit. [23]: 64–66°C.

chromatographie an Silicagel (Merck, Kieselgel 60) gereinigt (Tabelle 5).

Nach dieser Vorschrift wurden **2a** bzw. **2b** mit folgenden Reaktionspartnern umgesetzt: Benzoesäurechlorid (2:1), Terephthal- und Fumarsäuredichlorid (4:1), Phthalsäuredichlorid (3:1), *o*-Benzoylbenzophenon (1:1), Fumarsäurediethylester (2:1 und 4:1), Chlorameisensäureester (3:1), Malein- und Phthalsäureanhydrid (2:1).

3.2. Darstellung der Hydroxymethyl-Verbindungen 21a,b und 22a,b

Im ersten Schritt wurden nach der primären Metallierung von $CpM(CO)_3$ (M = Mn (1a), Re (1b)) die THF-Lösungen von 2a,b bei -78°C mit der äquimolaren Menge Paraformaldehyd (als Suspension in 5 ml THF) versetzt. Sobald das Reaktionsgemisch Raumtemperatur erreicht hatte, wurden 0.5 ml Wasser zugegeben. Dann wurde das Solvens abgezogen und das Rohprodukt (CO)₃MC₅H₄-CH₂OH (M = Mn (21a), Re (21b)) an Silicagel chromatographiert. Elution mit Diethylether (vgl. Tabelle 5).

Im zweiten Schritt wurden 223 mg (0.95 mmol) **21a** bzw. 201 mg (0.55 mmol) **21b** in THF-Lösung mit der doppelten molaren Menge an ⁿButyl-lithium versetzt. Nach 45 min wurden 0.95 bzw. 0.55 mmol Paraformaldehyd (als Suspension in 5 ml THF) zugegeben, und dann entsprechend der Darstellung von **21a,b** zu $(CO)_3MC_5H_3(CH_2OH)_2$ (M = Mn (**22a**), Re (**22b**)) aufgearbeitet.

3.3. Darstellung der Cymantrenylmethyl-Ester 23a und 24a

In 20 ml THF wurden 332 mg (1.42 mmol) des Alkohols $(CO)_3MnC_5H_4-CH_2OH$ (**21a**) gelöst und auf -78°C abgekühlt. Dann wurde die äquivalente Menge "Butyl-lithium (0.9 ml der käuflichen 1.6 M Stammlösung in Hexan) zugegeben. Zu der einen Hälfte der Lösung wurden 100 mg (0.71 mmol; 82 μ l) Benzoesäurechlorid, zu der anderen 71 mg (0.35 mmol, 50 μ l) Phthalsäuredichlorid, jeweils gelöst in 5 ml THF zugetropft. Nach dem Aufwärmen auf Raumtemperatur wurde das Solvens abgezogen, und die gebildeten Ester **23a** bzw. **24a** wurden über eine mit Silicagel (in Hexan) gefüllte Säule chromatographiert. Elution mit Dichlormethan ergab 200 mg (83%) gelbes **23a** bzw. 115 mg (56%) hellgelbes **24a** (Tabelle 5).

3.4. Darstellung von Di(cymantrenyl)sulfoxid (28a)

Ausgehend von 248 mg (1.21 mmol) CpMn(CO)₃ (1a) wurde durch Lithiierung eine THF-Lösung von 2a hergestellt, die bei -78° C mit einer THF-Lösung (5 ml) von 0.6 mmol (43.5 μ l) Thionylchlorid umgesetzt wurde. Dabei färbte sich die hellgelbe Lösung dunkelbraun. Nach dem Aufwärmen auf Raumtemperatur wurde das Lösungsmittel abgezogen. Der braungrüne Rückstand wurde zuerst (zur Abtrennung von **1a**) mit 50 ml Pentan, danach mit 50 ml CH₂Cl₂ extrahiert. Die Dichlormethan-Lösung enthielt **28a**, das als braunes Pulver (40 mg, 15%) zurückblieb. IR (KBr): ν (S=O) 1038 cm⁻¹.

3.5. Darstellung der ⁿButyl-Verbindungen 14c und 20c

Es wurden jeweils 8 mmol (5 ml der 1.6 M Hexanlösung) "Butyl-lithium in 20 ml THF vorgelegt. Zu dieser Lösung wurde bei -78° C eine THF-Lösung (5 ml) von 540 mg (2.66 mmol, 384 μ l) Phthalsäuredichlorid bzw. von 592 mg (4 mmol) Phthalsäureanhydrid langsam zugetropft. Aufwärmen auf Raumtemperatur und Filtration über Kieselgel ergab jeweils ein gelbes Filtrat. Nach Abziehen des Solvens blieben 690 mg (85%) 1-Hydroxy-1,3,3-tri("butyl)-1,3dihydro-isobenzofuran (14c) als gelboranges Öl bzw. 335 mg (34%) 3,3-Di("butyl)phthalid (20c) als gelbes Öl zurück.

Dank

Für die stetige Unterstützung unserer Experimentalarbeiten sind wir dem Fonds der Chemischen Industrie zu großem Dank verpflichtet. Herrn Prof. Dr. B. Wrackmeyer danken wir für viele Diskussionen über NMR-Probleme.

Literatur

- A.N. Nesmeyanov, K.N. Anisimov, N.E. Kolobova und Yu.V. Makarov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, (1968) 686; *Chem. Abstr.*, 69 (1968) 96 857 h.
- [2] A.N. Nesmeyanov, N.N. Sedova, Yu.V. Volgin und V.A. Sazonova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, (1977) 2353; *Chem. Abstr.* 88 (1978) 121 335p.
- [3] M.E. Wright und V.W. Day, J. Organomet. Chem., 329 (1987) 43.
- [4] (a) P. Härter, G. Boguth, E. Herdtweck und J. Riede, Angew. Chem., 101 (1989) 1058; (b) idem, Angew. Chem., Int. Ed. Engl., 28 (1989) 1008.
- [5] M. Herberhold und M. Biersack, J. Organomet. Chem., 381 (1990) 379, und dort zitierte Literatur.
- [6] S.S. Jones, M.D. Rausch und T.E. Bitterwolf, J. Organomet. Chem., 450 (1993) 27.
- [7] S. Pitter, G. Huttner, O. Walter und L. Zsolnai, J. Organomet. Chem., 454 (1993) 183.
- [8] A.N. Nesmeyanov, K.N. Anisimov, N.E. Kolobova und Yu.V. Makarov, Dokl. Akad. Nauk SSSR, 178 (1968) 1335; Chem. Abstr. Dokl. Akad. Nauk SSSR, 69 (1968) 52 270g.
- [9] M. Cais und M. Feldkimel, Tetrahedron Lett., (1961) 440.
- [10] T.E. Bitterwolf, J. Organomet. Chem., 312 (1986) 197.
- [11] S.P. Gubin, K.N. Anisimov, I.P. Shepilov, 1.P. Zlotina und N.E.

Kolobova, Izv. Akad. Nauk SSSR, Ser. Khim., (1967) 460; Chem. Abstr. 67 (1967) 32 231a.

- [12] A.G. Ginzburg, V.N. Setkina, Sh.G. Kasumov, G.A. Panosyan, P.V. Petrovskii und D.N. Kursanov, *Dokl. Akad. Nauk SSSR*, 228 (1976) 1368; *Chem. Abstr.* 85 (1976) 176 447v.
- [13] N.E. Kolobova, Z.P. Valueva, K.N. Anisimov und G.Z. Suleimanov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1978, 910; *Chem. Abstr.* 89 (1978) 43 692g.
- [14] A.W. Cordes, B. Durham und E. Askew, Acta Cryst., C45 (1989) 1994.
- [15] A.W. Cordes, B. Durham und E. Askew, Acta Cryst., C45 (1989) 1229.
- [16] A.W. Cordes, B. Durham und E. Askew, Acta Cryst., C45 (1989) 1231.
- [17] T.E. Bitterwolf, J. Organomet. Chem., 386 (1990) 9.
- [18] C. Lo Sterzo, M.M. Miller und J.K. Stille, Organometallics, 8 (1989) 2331.
- [19] M. Herberhold und M. Biersack, J. Organomet. Chem., 443 (1993) 1.
- [20] A.G. Ginzburg, V.N. Setkina, D.N. Kursanov und Sh.G. Kasumov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, (1976) 2398; *Chem. Abstr.* 86 (1977) 55 542j.
- [21] W.E. Parham und R.M. Piccirilli, J. Org. Chem., 41 (1976) 1268.
- [22] N.M. Loim, P.V. Kondrat'ev, N.P. Solov'eva, V.A. Antonovich,

P.V. Petrovskii, Z.N. Parnes und D.N. Kursanov, J. Organomet. Chem., 209 (1981) 233.

- [23] N.E. Kolobova, M.Ya. Solodova und Z.P. Valueva, *Izv. Akad. Nauk SSSR, Ser. Khim.*, (1978) 735; *Chem. Abstr.* 89 (1978) 43 686h.
- [24] A.N. Nesmeyanov, T.P. Tolstaya, V.V. Korol'kov und A.N. Yarkevich, Dokl. Akad. Nauk SSSR, 221 (1975) 1337; Chem. Abstr. (1975) 114 602s.
- [25] M. Höfler und A. Baitz, Chem. Ber., 109 (1976) 3147.
- [26] I.P. Lorenz, J. Messelhäuser, W. Hiller und M. Conrad, J. Organomet. Chem., 316 (1986) 121.
- [27] G. Beuter, S. Drobnik, I.P. Lorenz und A. Lubik, Chem. Ber., 125 (1992) 2363.
- [28] M. Herberhold und B. Schmidkonz, J. Organomet. Chem., 308 (1986) 35.
- [29] B. Wrackmeyer, M. Biersack, H.-D. Brendel und M. Herberhold, Z. Naturforsch., 47b (1992) 1397.
- [30] M. Herberhold, O. Nuyken und T. Pöhlmann, J. Organomet. Chem., 405 (1991) 217.
- [31] D.W. Hughes, H.L. Holland und D.B. MacLean, Can. J. Chem., 54 (1976) 2252.
- [32] S. Berger, Tetrahedron, 37 (1981) 1607.
- [33] J. Brunn, R. Radeglia, B. Lewanscheck und S. Peust, Z. Phys. Chem., 258 (1977) 681.